CONCOURS DE RECRUTEMENT D'AIDES TECHNIQUES DE LABORATOIRE (SESSION 2001). EPREUVES PRATIQUES.

EPREUVE n°2: option Chimie.

Durée: 4 heures

Interrogation préliminaire

(maximum 1/2 heure)

I - préparation d'une solution titrée d'acide sulfurique à partir d'acide sulfurique commercial.

But

On désire préparer un volume $Vf_2 = 100,00 \text{ cm}^3$ d'une solution d'acide sulfurique à la concentration $C_2 = 0,100 \text{ mol } H_3O^+$. L⁻¹ à partir de l'acide sulfurique commercial.

Principe

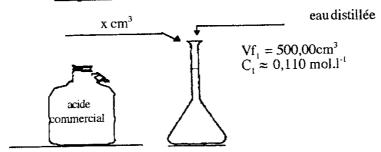
L'acide sulfurique commercial a une pureté mal connue, car il absorbe l'humidité de l'air, il n'est donc pas possible de préparer la solution demandée directement.

On préparera d'abord une solution environ 10% plus riche que celle demandée, de volume $Vf_1 = 500,00 \text{ cm}^3$, à la concentration $C_1 \approx 0,110 \text{ mol } H_3\text{O}^+\text{.L}^{-1}$, que l'on dosera par une solution d'hydrogénocarbonate de potassium préalablement préparée et que l'on rectifiera ensuite à la concentration C_2 demandée.

La concentration C₂ sera vérifiée en dosant l'acide par pesée d'hydrogénocarbonate de potassium.

<u>Données</u>

Acide sulfurique commercial:


 H_2SO_4 : $M \approx 98 \text{ g.mol}$ $d \approx 1,83$ pureté en masse $\approx 95\%$

Hydrogénocarbonate de potassium

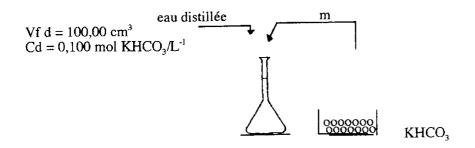
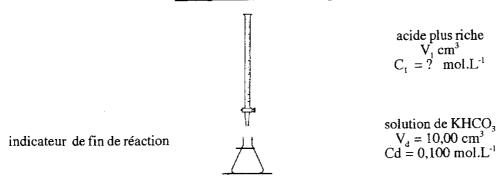
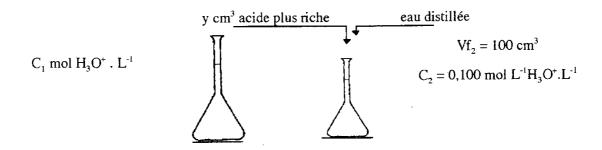

KHCO₃: $\hat{M} = 100,11 \text{ g.mol}^{-1} \text{ pureté } P = 100\%.$

Schéma de la manipulation


Préparation de l'acide plus riche


Préparation de la solution titrée de KHCO3

Dosage de la solution plus riche

Rectification de l'acide plus riche

- 1. Rappeler les précautions à prendre lors de l'utilisation de l'acide sulfurique concentré.
- 2. Démontrer que la concentration C_0 en mol H_3O^+ . L^{-1} de l'acide commercial est voisine de 36 mol H_2O^+ . L^{-1} .
- 3. Démontrer que le volume x d'acide commercial à prélever lors de la préparation de l'acide plus riche doit être voisin de 1,6 cm³.
- 4. Donner et justifier le mode opératoire de la préparation de l'acide plus riche.
- 5. Ecrire l'équation de la réaction du dosage de l'acide sulfurique dilué par la solution d'hydrogénocarbonate de potassium.
- 6. Quels sont les indicateurs les plus adaptés à ce dosage?

Données:

$$H_2O + CO_2 / HCO_3^- : pK_1 = 6.4$$

$$HCO_3^- / CO_3^2$$
: $pK_2 = 10.3$

$$pK_2 = 10,3$$

Noms	pH (zone de virage)
hélianthine	3,2 - 4,4
vert de bromocrésol	3,8 - 5,4
rouge de méthyle	4,2 - 6,2
bleu de bromothymol	6,0 - 7,6
phénolphtaléine	8,3 - 10,0
•	

- 7. Quelle masse m d'hydrogénocarbonate de potassium faut-il peser pour préparer 100 cm³ de solution exactement 0,100 mol. L^{-1} ? La pesée se fait à la balance donnant le 10^{-4} g près.
- 8. Calculer le volume y d'acide à utiliser lors de la rectification si l'acide plus riche a une concentration $C_1 \approx 0.11 \text{ mol } H_3O^+$. L^{-1} Donner et justifier le mode opératoire de la rectification de l'acide plus riche.

II - Préparation de solutions tampons

Vous avez à votre disposition les solutions ou les substances suivantes :

- solution d'acide éthanoïque ≈ 0.2 mol.dm⁻³
- NaCH₃COO en solution ≈ 0.2 mol.dm⁻³
- $KH_2PO_4 \approx solide (M \approx 136g.mol^{-1})$
- Na_2HPO_4 en solution ≈ 0.2 mol.dm⁻³
- NH₄Cl solide ($M \approx 53.5 \text{ g.mol}^{-1}$)
- NaOH $\approx 2 \text{ mol.dm}^{-3}$ et NaOH $\approx 0,1 \text{ mol.dm}^{-3}$
- HCl ≈ 2 mol.dm⁻³

Caractéristiques des couples acide-base

- $H_3PO_4/H_2PO_4: pKa_1 = 2.1$ $H_2PO_4/H_2PO_4: pKa_2 = 7.2$
- $HPO_4^{2-}/PO_4^{3-}: pKa_3 = 12,4$
- NH_4^+/NH_3 : $pK_a = 9.25$
- $CH_3COOH / CH_3COO^- : pK_a = 4,75$
- 9. Comment peut-on préparer , rapidement et simplement, deux solutions tampons de pH voisins de 4,5 et 7,4 à partir des produits précédents ?
- 10 . Justifier la réponse sans entrer dans les calculs.

Comment opére-t'-on pour régler la valeur avec précision?

III - Montage de chimie organique Purification de l'aniline par entrainement a la vapeur

Le montage comprend:

- Un bouilleur produisant la vapeur d'eau muni d'un tube égaliseur de pression. Le chauffage est assuré par un bec bunsen..
- D'un ballon intermédiaire contenant 100 cm³ d'aniline et 50 cm³ d'eau.
- Son chauffage est assuré par un chauffe-ballon électrique, que l'on retire lorsque le mélange atteint l'ébullition.
- Ce ballon est surmonté d'une tête de distillation simple muni d'un thermométre
- (-10°C, 110°C).
- D'un réfrigérant droit, muni d'une allonge de recette.
- Le distillat est récupéré dans un erlen de 250 cm³ plongé dans la glace.
- 11. Faire à main levée et sans perdre de temps un schéma correspondant à ce montage.