Cinétique de la réaction entre les ions iodures et l'eau oxygénée

Objectif

Tracer l'évolution de la quantité de matière puis celle de l'avancement en fonction du temps (la vitesse d'une réaction est définie en fonction de l'avancement).

Produits

thiosulfate de sodium 0,1 M acide sulfurique 0,5 M iodure de potassium 0,1 M empois d'amidon

eau oxygénée 1 M (en raison de son instabilité l'eau oxygénée doit être préalablement dosée faute de quoi l'expérience peut être très lente)

Matériel

erlenmeyer, bécher, burette, agitateur magnétique pipette 5 mL, éprouvette graduée de 100 mL, chronomètre

PRINCIPE

La réaction modélisée par l'équation chimique suivante est lente.

Equation chimique		2 I ⁻ (aq) +	$H_2O_2(aq) + 2$	$\mathbf{H_3O^+(aq)} =$	$I_2(aq) +$	4 H ₂ O(l)				
Etat	Avancement	Quantités de matières								
E.I	$\mathbf{x} = 0$	n _i (I ⁻)	n _i (H ₂ O ₂)	excès	0	0				
En cours	X	$n_i(I^-)-2x$	$n_i (H_2O_2)-x$	excès	X	4 x				

La quantité de diiode formé peut être évaluée indirectement par l'ajout d'une quantité connue de thiosulfate de sodium. Celui-ci réagit instantanément avec le diiode formé. En présence d'empois d'amidon ou de thiodène on observe un virage de l'incolore au bleu une fois que tous les ions thiosulfate sont consommés. A chaque virage

Equation chimique		$I_2(aq)$ +	$2 S_2 O_3^{2-}(aq) = 2 I^{-}(aq) + S_4 O_6^{2-}$						
Etat	Avancement	Quantités de matières							
Etat initial	$\mathbf{x'} = 0$	X	$n_i(S_2O_3^{2-})$						
En cours	х'	$\mathbf{x} - \mathbf{x}$	$n_i(S_2O_3^{2-})-2x'$						
A		0	0						
l'équivalence									

A l'équivalence les quantités de matière du réactif titré et du réactif titrant sont nulles. On peut donc en déduire :

$$\begin{array}{ll} n_i(S_2{O_3}^{2-})\text{-}2x\text{'}\text{=}\ 0 & \Rightarrow & x' = n_i(S_2{O_3}^{2-})/2 = [S_2{O_3}^{2-}]\text{*}V(S_2{O_3}^{2-})/2 \\ x\text{-}x' = 0 & \Rightarrow & x = x' = [S_2{O_3}^{2-}]\text{*}V(S_2{O_3}^{2-})/2 \end{array}$$

Sans parler de dosage en retour, on peut faire des expériences profs préalables permettant à l'élève de comprendre le principe. On ne lui donne pas directement l'équation de la réaction

DEROULEMENT DE LA SEANCE

Partie expérimentale

Expérience prof 1 : Réaction étudiée

Placer dans un erlenmeyer: 50 mL de K⁺(aq)+I⁻(aq) 80 mL d'acide sulfurique 5 mL d'eau oxygénée

Pistes de réflexions pour l'élève

- -Observations
- -La réaction est-elle lente ou rapide
- -Justifier l'apparition de la couleur rouge

Expérience prof 2 : Rôle de l'empois d'amidon

Dans un tube à essai placer 1 gouttes de solution de diiode ajouter de l'eau distillée. La couleur de l'iode devient imperceptible à l'œil. Ajouter 1 mL d'empois d'amidon.

Expérience prof 3 : Réaction étudiée en présence de thiosulfate

Placer dans un erlenmeyer: 50 mL de K⁺(aq)+I⁻(aq) 80 mL d'acide sulfurique 5 mL d'empois d'amidon 5 mL d'eau oxygénée 1 mL de thiosulfate de sodium

Pistes de réflexions pour l'élève

- Observations
- Qu'est-ce qui peut expliquer le retard d'apparition du diiode ?

Equations chimiques et synthèse

Expérience élève : Suivi temporel de la transformation

Pour obtenir de bons résultats le volume de thiosulfate versé doit être précisément de 1 mL.

- Remplir une burette de thiosulfate de sodium
- Placer dans un erlenmeyer A :
 50 mL de K⁺(aq)+I⁻(aq)

80 mL d'acide sulfurique 5 mL d'empois d'amidon

Placer l'erlenmeyer A sous la burette, et ajouter 1 mL de thiosulfate de sodium, maintenir l'agitation magnétique pendant toute la durée de l'expérience.

- Placer dans un bécher B
 5 mL d'eau oxygénée
- A t = 0 simultanément :
 - déclencher le chronomètre
 - verser le contenu du bécher B dans le bécher A

Au bout d'un temps t_1 la solution vire de l'incolore au bleu.

- Relever t₁ sans arrêter le chronomètre
- Verser à nouveau 1 mL de thiosulfate

Au bout d'un temps t₂ la solution vire à nouveau de l'incolore au bleu.

- Relever t₂ sans arrêter le chronomètre
- Verser à nouveau 1 mL de thiosulfate

Continuer ainsi jusqu'à $V(S_2O_3^{2-}) = 15 \text{ mL}$

Tableau de résultas

Virage n°	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Temps t (s)															
$V_{total}(S_2O_3^{2-})$															
) en mL															

Exploitations possibles

Expliquer le principe du TP

Construction du tableau descriptif de la première transformation, détermination de \mathbf{x}_{\max} .

Construction du tableau de la deuxième transformation en faisant le lien avec le premier tableau.

Détermination de x' au virage, puis de x, comparaison de $n(I_2)$ et de x Tracé de x=f(t)

Détermination graphique du temps de ½ réaction,

Détermination graphiques de vitesses de réaction à différentes dates

Tracé de la vitesse instantanée à l'aide d'un tableur

Commentaire de l'évolution de la vitesse