DETERMINATION DU PKA D'UN INDICATEUR COLORE : LE BLEU DE BROMOTHYMOL

Le bleu de bromothymol est un composé organique qui existe sous deux formes :

- sa forme acide HIn est jaune en milieu aqueux
- sa base conjuguée In est bleue en milieu aqueux

$$Hin + H_2O = H_3O^+ + In^-$$

Le couple HIn / In $^-$ est caractérisé par sa constante d'équilibre $K_a = \frac{[H_3O^+][In^-]}{[Hin]}$

On déterminera dans une solution aqueuse de pH connu, la valeur du rapport $\frac{[In^-]}{[HIn]}$; ce rapport sera mesuré par spectrophotométrie d'absorption, on en déduira le pKa-

I – PRINCIPE DE LA DETERMINATION DU RAPPORT $[In^-]$

La détermination du rapport se fait à partir des valeurs des absorbances des trois solutions suivantes, pour une longueur d'onde

Solution 1	Solution 2	Solution 3
BBT à pH connu (7,2) Solution verte Les deux formes colorées présentes le sont à des concentrations molaires du même ordre de grandeur. [HIn] ₁ + [In ⁻] ₁ = C Absorbance A ₁	BBT à pH = 1 solution jaune	BBT à pH = 14 solution verte
	[In ⁻]<<[HIn]	[HIn] << [In ⁻]
	Forme majoritaire: HIn	Forme majoritaire In ⁻
	[HIn] ₂ ≈ C Absorbance A ₂	[In¯] ₃ ≈ C Absorbance A ₃

II - PROTOCOLE OPÉRATOIRE

La solution mère de bleu de bromothymol est à 1 g.L⁻¹.

La solution tampon de pH = 7,2 est obtenue en mélangeant 50 mL d'une solution d'hydrogénophosphate de sodium $(2Na^+ + HPO_4^2)$ à $4\times10^{-1}\ mol.L^{-1}\ avec\ 50\ mL\ d'une\ solution\ d'acide\ chlorhydrique\ \grave{a}\ 2\times10^{-1}\ mol.L^{-1}.\ On\ a\ alors\ pH=pK_A\ du\ couple\ H_2PO_4^-\ /\ HPO_4^{2-}\ .$ On prépare 100 mL de chacune des solutions.

Solution S ₁	Dans une fiole jaugée de 100 mL rincée avec le milieu tampon $H_2PO_4^-$ / HPO_4^{2-} , introduire 5 mL de la solution mère de BBT. Compléter avec la solution tampon, homogénéiser. On obtient une solution verte S_1 dont le pH est de 7,2.
Solution S ₂	Dans une fiole jaugée de 100 mL rincée avec de l'acide chlorhydrique à $0,1$ mol.L ⁻¹ , introduire 5 mL de la solution mère de BBT. Compléter avec la solution d'acide chlorhydrique et homogénéiser. On obtient la solution jaune S_2 dont le pH ≈ 1 .
Solution S ₃	Dans une fiole jaugée de 100 mL rincée avec une solution de soude à 1 mol.L ⁻¹ , introduire 5 mL de la solution mère de BBT. Compléter avec de la soude et homogénéiser. On obtient la solution bleue dont le pH \approx 14.

Pour chacune des trois solutions, on trace le spectre d'absorption $A = f(\lambda)$ à l'aide du spectrophotomètre. On superpose les trois spectres: les résultats obtenus se trouvent sur la page suivante.

Remarque: Le blanc réactif est fait en prenant pour S_1 la solution tampon pH = 7,2; en prenant pour S_2 , l'acide chlorhydrique 0,1 mol.L⁻¹; en prenant pour S₃, la soude 1 mol.L⁻¹.

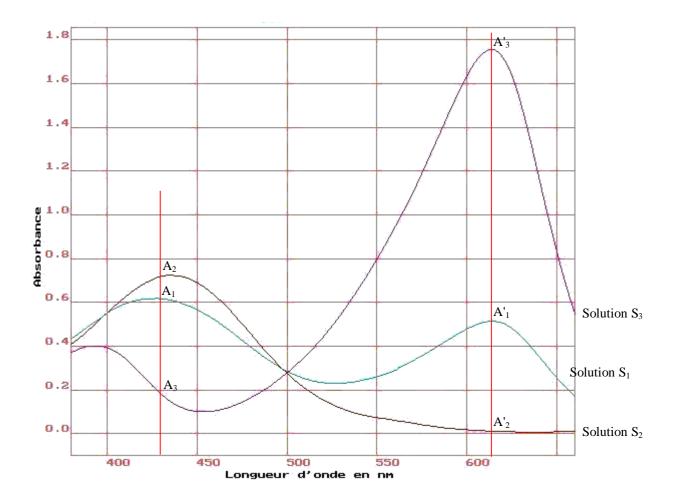
III - EXPLOITATION DES GRAPHES OBTENUS POUR LE CALCUL DU PKA DU BBT

Nous choisirons deux longueurs d'onde λ et λ ' de part et d'autre du point I et nous appliquerons la loi de Lambert-Beer à chacune des trois solutions.

• Pour
$$\lambda$$
: $A_1 = \varepsilon_{\text{HIn}} \ l \ [\text{HIn}]_1 + \varepsilon_{\text{In}} \ l \ [\text{In}^-]_1$ $A_2 = \varepsilon_{\text{HIn}} \ l \ [\text{HIn}]_2$ $A_3 = \varepsilon_{\text{In}} \ l \ [\text{In}^-]_3$ d'où $A_1 = \frac{A_2}{C} \ [\text{HIn}]_1 + \frac{A_3}{C} \ [\text{In}^-]_1$
$$A_1 = \frac{A_2}{C} \ [\text{HIn}]_1 + \frac{A_3}{C} \ (C - [\text{HIn}]_1)$$

$$A_1 = [\text{HIn}]_1 \ (\frac{A_2}{C} - \frac{A_3}{C}) + A_3 \ \text{d'où} \ \boxed{\frac{[HIn]_1}{C} = \frac{A_1 - A_3}{A_2 - A_3}}$$
 • Pour λ ': $A'_1 = \varepsilon_{\text{HIn}} \ l \ [\text{HIn}]_1 + \varepsilon_{\text{In}} \ l \ [\text{In}^-]_1$ $A'_2 = \varepsilon_{\text{HIn}} \ l \ [\text{HIn}]_2$ $A'_3 = \varepsilon_{\text{In}} \ l \ [\text{In}^-]_3$

 $A'_3 = \varepsilon_{\text{In}} l [\text{In}]_3$


$$d'où A'_{1} = \frac{A'_{2}}{C} [HIn]_{1} + \frac{A'_{3}}{C} [In^{-}]_{1}$$

$$A'_{1} = \frac{A'_{2}}{C} (C - [In^{-}]_{1}) + \frac{A'_{3}}{C} [In^{-}]_{1}$$

$$A'_{1} = [In^{-}]_{1} (\frac{A'_{3}}{C} - \frac{A'_{2}}{C}) + A'_{2} d'où \boxed{\frac{[In^{-}]_{1}}{C} = \frac{A'_{1} - A'_{2}}{A'_{3} - A'_{2}}}$$

$$donc \boxed{\frac{[In^{-}]_{1}}{[HIn]_{1}} = \frac{A'_{1} - A'_{2}}{A'_{3} - A'_{2}} \times \frac{A_{2} - A_{3}}{A_{1} - A_{3}}}$$

Or pH₁ = pK_a + lg
$$\frac{[In^{-}]_{1}}{[HIn]_{1}}$$
 donc pK_a = pH₁ - lg $\frac{[In^{-}]_{1}}{[HIn]_{1}}$ donc $pK_{a} = pH_{1} - lg \left(\frac{A'_{1} - A'_{2}}{A'_{3} - A'_{2}} \times \frac{A_{2} - A_{3}}{A_{1} - A_{3}}\right)$

Application numérique de la formule trouvée ci-dessus:

$$pK_a = pH_1 - lg\left(\frac{3.5 - 0.65}{10.1 - 0.65} \times \frac{4.7 - 1.6}{4.1 - 1.6}\right) = 7.2 - 0.4 = 6.8$$

Le pKa du bleu de bromothymol est bien de 6,8.