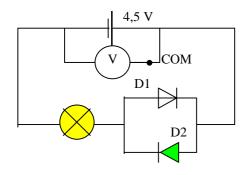
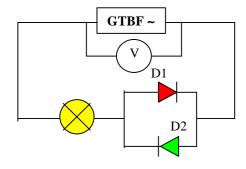

GRAPHE D' UNE TENSION ALTERNATIVE CORRIGE

I. Observons deux sortes de tensions.


1ère Expérience.

Observations:

- On constate que la tension ne varie pas.
- La lampe brille.
- D1 brille, D2 ne brille pas.


2^{ère} Expérience

Observations:

- On constate que la tension ne varie pas mais elle est négative.
- La lampe brille.
- D2 brille, D1 ne brille pas.

3^{ère} Expérience

Observations:

- La lampe s'allume (deux fois plus)
- D1 et D2 s'allument et s'éteignent alternativement
- La tension varie entre deux valeurs opposées

Conclusion : ♦ Quand un circuit est alimenté par un générateur de tension continue, le courant circule toujours dans le même sens : c'est un courant continu.

♦ Quand un circuit est alimenté par un générateur de tension alternative, le courant circule alternativement dans un sens puis dans l'autre : c'est un courant alternatif.

II. Graphe d'une tension alternative.

1. Montage

	A		
			GTBF : C'est un générateur basses fréquences
GTBF		v	— V : Le voltmètre est utilisé en continu
	Ď		

2	Observation	
/	Uncervaiion	

- Que peut-on dire de l'éclat de la lampe ?

L'éclat augmente puis diminue et ainsi de suite.

- Que peut-on dire de la tension U_{AB}?

La tension varie entre et (valeurs à relever lors de la manipulation)

- La lampe brille-t-elle quand la tension est négative ?

La lampe brille quand la tension est négative.

- Quand la lampe s'éteint-elle ?

Elle s'éteint quand la tension est nulle.

3. Relevé des mesures.

A l'aide d'un chronomètre, on essaie de suivre l'évolution de la tension U_{AB} au cours du temps, en notant les valeurs données par le voltmètre . Le signal est donné à intervalles de temps réguliers . A chaque signal, un élève lit rapidement la tension indiquée par le voltmètre en appuyant sur le bouton DATA HOLD

Temps (s)						
$U_{AB}(V)$						
Temps (s)						
U _{AB} (V)						

4	. Représentation	graphique	•
_			

Dans un repère, on reportera:

- la durée t en abscisse	: échelle :	cm représentent	secondes.

Placer les points en utilisant le signe (+). Tracer au crayon de papier et à main levée une ligne continue, sans pic ni bosse, passant le plus près possible de chaque point.

⁻ la tension U_{AB} en ordonnée : échelle : cm représentent volts.

5. Exploitation du graphe.

a / Décrire l'allure de la courbe en utilisant le mot tension.

La tension monte et descend régulièrement par rapport à l'axe. Cette courbe s'appelle une sinusoï de. Elle représente une tension sinusoï dale.

b / Repasser en couleur, la partie de la courbe qui se répète.

Cette partie répétitive est appelée *motif élémentaire*.

c / Combien de temps dure un motif ?

Cette durée est appelée *période*.

d / Quelles sont les tensions extrêmes du graphe ? valeur 1 :; valeur 2 :

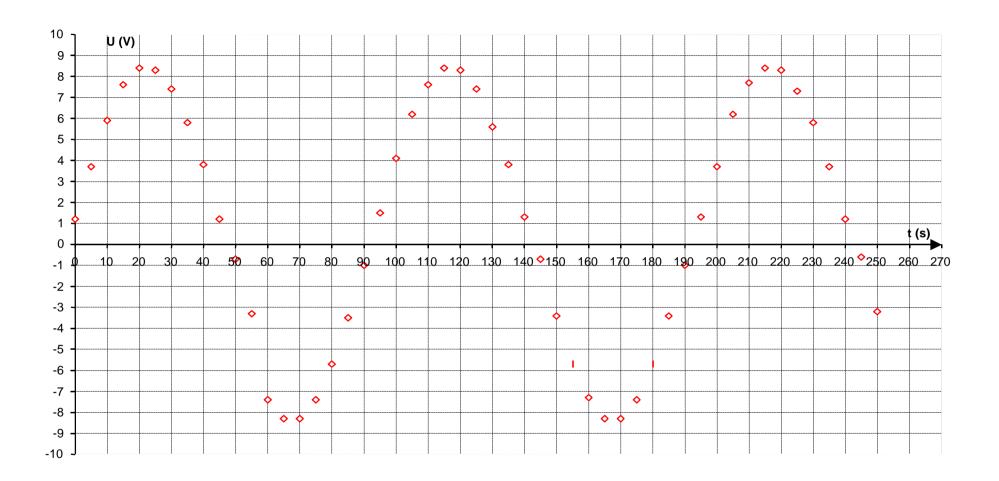
Comparer ces deux valeurs.

Elles sont opposées.

La valeur numérique commune est appelée *tension maximale* de la tension et se note

$$U_{max} = \dots$$

6. A retenir.


- ♦ On appelle tension alternative, une tension qui varie régulièrement au cours du temps en prenant alternativement des valeurs positives et des valeurs négatives.
- ♦ Une tension est périodique si un motif se répète indéfiniment.

III. Annexe

Ci-dessous un tableau de mesures réellement obtenues et, page suivante, la répartition des points. Les mesures et le graphe pourraient éventuellement servir en cas de besoin.

t (s)	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70
U(V)	1.2	3.7	5.9	7.6	8.4	8.3	7.4	5.8	3.8	1.2	-0.7	-3.3	-5.7	-7.4	-8.3
t (s)	75	80	85	90	95	100	105	110	115	120	125	130	135	140	145
U (V)	-8.3	-7.4	-5.7	-3.5	-1	1.5	4.3	6.2	7.6	8.4	8.3	7.4	5.6	3.8	1.3
t (s)	150	155	160	165	170	175	180	185	190	195	200	205	210	215	220
U (V)	-0.7	-3.4	-5.7	-7.3	-8.3	-8.3	-7.4	-5.7	-3.4	-1	1.3	3.7	6.2	7.7	8.4
t (s)	225	230	235	240	245	250	255	260	265	270	275	280	285	290	300
U(V)	8.3	7.3	5.8	3.7	1.2	-0.6	-3.2	-5.7	-7.3	-8.3	-8.3	-7.5	-5.8	-3.5	-1

Graphe d' une tension alternative

