
Etude du dioptre plan

Un dioptre plan est constitué de deux milieux transparents séparés par une surface plane. On étudiera du couple (objet/image conjuguée), on recherchera les conditions de stigmatisme.

1 Un dioptre plan sépare l'air (milieu 1) du verre (milieu 2), la lumière passe de l'air dans le verre :

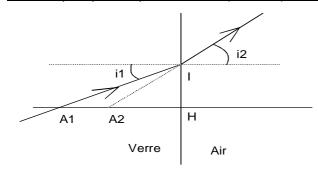
Le dioptre plan donne d'un objet réel A_1 une image virtuelle A_2 .

$$A_1 \xrightarrow{\text{dioptreplan}} A_2$$
(n1) (n2)

Application numérique

$$A_1 H = 5.0 \text{ cm}$$
;

$$n_1 = 1,0$$


$$n_2 = n_{verre} = 1,5$$

- 1° Donner la relation entre i₁, i₂.
- 2° Rechercher l'expression littérale de A₁H et de A₂H en fonction de HI et des angles i₁ et i₂.
- 3° En déduire une relation entre A₁H, A₂H, i₁ et i₂.
- 4° Sur Regressi:
- définir les constantes n₁, n₂ et A₁H;
- choisir le degré comme unité d'angle
- définir la variable i1 (°), compléter le tableau de mesures
- définir les fonctions i₂ (°), A₂H et HI

i ₁ (°)	expression littérale	3	5	10	20	30	40	50	60	70	80
i ₂ (°)											
A ₂ H											
HI											

- 5° Tracer la courbe $A_2H = f(i_1)$. Observation. Imprimer la courbe et le tableau de mesures.
- 6° Faire une construction soignée à l'échelle 1. Tracer HI puis A₂H pour chaque angle d'incidence i₁.
- 7° Conclusion : Montrer qu'il n'y a pas de stigmatisme rigoureux pour le dioptre plan.

2 Un dioptre plan sépare le verre (milieu 1) de l'air (milieu 2), la lumière passe du verre dans l'air :

Un dioptre plan sépare 2 milieux transparents verre/air, d'indice $n_1 = 1,5$, $n_2 = 1,0$.

$$A_{1} \xrightarrow{\text{dioptreplan}} A_{2}$$
(n1) (n2)

Application numérique

$$A_1 H = 10,0 cm$$
;

$$n_1 = n_{verre} = 1,5$$

$$n_2 = 1,0$$

Si le temps le permet refaire la même étude pour ce deuxième cas !

- A partir du schéma, refaire le même travail pour trouver une relation entre A₁H, A₂H, i₁ et i₂.
- Faire le même travail sur Régressi, en page 2 ; définir les constantes, les variables, tracer la courbe A₂H = f(i₁).
- Faire une construction soignée à l'échelle 1. Tracer HI puis A₂H pour chaque angle d'incidence i₁.
- Montrer qu'il n'y a pas de stigmatisme rigoureux pour le dioptre plan.

3 Etude du stigmatisme approché :

 $\text{si } i_1 \text{ est petit} \quad \Rightarrow i_2 \text{ est petit , alors} \quad \Rightarrow \begin{cases} \tan i_1 \approx i_1 \text{ et } \tan i_2 \approx i_2 \\ \sin i_1 \approx i_1 \text{ et } \sin i_2 \approx i_2 \end{cases} \quad \text{(angles exprimés en radians)}$

Montrer que l'on écrire les relations de conjugaison pour un dioptre plan sous la forme :

Dans le cas de stigmatisme approché : $A_1 \xrightarrow{\text{dioptreplan}} A_2 \xrightarrow{\text{(n1)}} A_2 = \frac{HA_1}{n1} = \frac{HA_2}{n2}$