Rappels sur les lois de la réflexion et de la réfraction

But du TP : vérifier les lois de Descartes pour la réflexion, pour la réfraction.

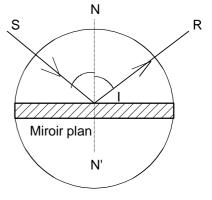
Matériel:

- lanterne à rayons parallèles

- diaphragme à une ou plusieurs fentes

- cercle gradué en degré (ou discoptic)

- miroir plan, miroir cylindrique


- hemi-cylindre de plexiglas.

1 Etude de la réflexion par un miroir plan :

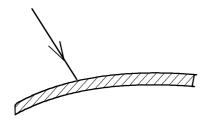
- Utiliser le « discoptic » et le diaphragme à une seule fente.

- Régler la position de la fente pour que le pinceau lumineux passe par le centre du cercle.

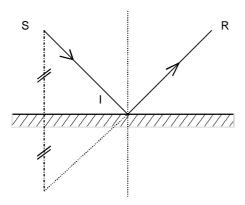
- Placer le miroir verticalement le long du diamètre 90°- 90°.

!!! Faire vérifier le réglage avant de commencer les mesures.

- Envoyer un rayon lumineux sur le miroir .


- Relever les angles \hat{i} = angle(SI,IN) et \hat{r} = angle(IN,IR)

- Faire varier l'incidence i entre 0 et 90 °.

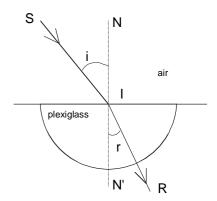

- Enoncer les lois de Descartes pour la réflexion.

Remarques:

1. Réflexion par une surface réfléchissante non plane : compléter le schéma ci-dessous.

2. Le rayon réfléchi est le symétrique du rayon incident par rapport à la surface réfléchissante

2 Etude de la réfraction :


A la lumière passe de l'air dans le plexiglas.

a) Mesures:

- Utiliser le discoptic, une fente simple et l'hemi-cylindre de plexiglas.
- Régler la position de la fente pour que le pinceau lumineux passe par I le centre commun du cercle et du plexiglas.
- La face plane du demi-cylindre coïncide avec le diamètre 90° 90°. Initialement le rayon lumineux arrive sous une incidence nulle sur le plexiglas. Si le réglage est bien fait, le rayon ne doit subir aucune déviation lorsqu'il passe à travers le plexiglas.

!!! Faire vérifier par le professeur.

- Faire tourner le disque et augmenter l'angle d'incidence i de 10° en 10°
- Relever les angles $\stackrel{\wedge}{i}$ = angle(SI,IN) et $\stackrel{\wedge}{r}$ = angle(IN,IR)

b) Etude sur Régressi

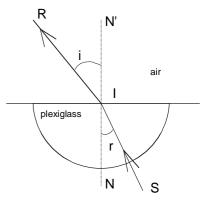
- Rentrer ces mesures (i,r) sur Régressi.
- Modifier le format de ces mesures et garder 3 chiffres significatifs.
- Tracer la représentation graphique de la fonction r----i = f(r) Observation ?
- Définir les variables nouvelles x = sin(r) et y = sin(i)
- Tracer la représentation graphique de la fonction $x \longrightarrow y = f(x)$ Observation?
- Proposer un modèle de la forme y = n * x c a d sin(i) = n * sin(r)
- Relever la valeur de n donnée par cette modélisation.

c) Analyse du phénomène observé :

- Si $i = 0^{\circ}$ quelle est la valeur de r? Que fait le rayon lumineux quand il passe du plexiglas dans l'air?
- Si $i = 90^{\circ}$ quelle est la valeur de r? Cette valeur maximale de r s'appelle angle limite λ

Remarque : cet angle est difficile à mesurer avec le dispositif expérimental. On peut retrouver la valeur de λ par extrapolation sur la courbe sur la courbe i = f(r)

- Sur la courbe i = f(r), déterminer graphiquement la valeur de λ (utiliser la fonction « curseur »).
- Comparer $sin(\lambda)$ à 1/n.
 - !!! Faire vérifier avant d'imprimer la courbe.


B La lumière passe du plexiglas dans l'air :

a) Mesures:

- Relever les nouveaux couples (r, i) et entrer cette série de mesures sur le même fichier Regressi sur une "page nouvelle".

b) Etude sur Régressi

- Tracer la représentation graphique de la fonction $r \longrightarrow i = f(r)$.
- Superposer pages 1 et 2 pour la fonction i = f(r). Observation.
 - !!! Faire vérifier avant d'imprimer les courbes superposées.

c) Analyse du phénomène observé :

- Si $r = 0^{\circ}$ quelle est la valeur de i?
 - que fait le rayon lumineux quand il passe du plexiglas dans l'air ?
- Si 0° < r < r_{max} quelle est la valeur de r_{max} ? quelle est alors la valeur de i?
 - que fait le rayon lumineux quand il passe du plexiglas dans l'air ?
- Si $r > r_{max}$ que devient le rayon lumineux incident ?

Reporter ces couples (r,i) particuliers sur la courbe précédente i = f(r).