Mesure des objets microscopiques

On observera différents objets microscopiques en utilisant un microscope.

Pour mesurer la dimension d'un objet on utilisera

- une chambre claire
- un ensemble (micromètre oculaire/micromètre objectif)

Manipulation:

1.1 Utilisation de la chambre claire

- Dessiner l'allure de quelques objets microscopiques proposés ; il s'agit d'observations globales et non de recherche de détails fins.
- Evaluer leur dimension en ajoutant l'échelle du dessin réalisé.
- 1.2 Mesure d'une longueur en utilisant le micromètre oculaire et le micromètre objectif.
- Placer un fragment de cheveu ou un fil de nylon fin entre une lame et une lamelle.
- Mesurer son diamètre en utilisant le micromètre oculaire et le micromètre objectif.
- Utiliser les différentes combinaisons objectif-oculaire. Comparer les résultats.

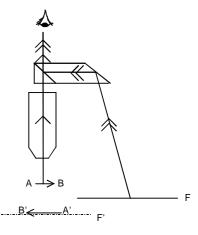
1.3 Mesure du cercle oculaire

- Placer sur la platine un papier diffusant.
- Munir le tube d'un objectif faible (x 10) et d'un oculaire faible (x 5). Mettre au point sur ce papier.
- Couper le faisceau sortant du microscope par un papier quadrillé millimétré.
- Observer l'existence du cercle oculaire (section circulaire minimum à bords nets). Mesurer son diamètre.
- Recommencer avec d'autres combinaison (objectif-oculaire). Observation ?

La pupille de l'œil a un diamètre de 2 mm environ, cette pupille risque-t-elle de diaphragmer les faisceaux émergents du microscope ?

Principe de la chambre claire et d'un micromètre objectif.

Une chambre claire est un dispositif coiffant l'oculaire.

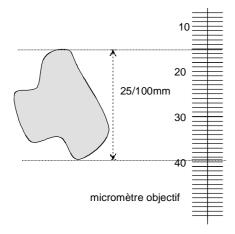

Elle permet d'observer à la fois :

- l'image F' d'une feuille F placée sur la table.
- l'image A'B' de l'objet AB donnée par le microscope.

Le rayon lumineux subit 2 réflexions dans le chambre claire.

L'image F' est en vraie grandeur ; elle se forme à distance constante de l'oeil.

A'B' peut occuper toute position dans le champ de vision par déplacement du tube par rapport à AB.


1 Dessin de l'objet :

Soient AB l'objet à examiner et F une feuille posée sur la table et éclairée.

- Par manoeuvre du tube, amener A'B' à se former dans le plan de F', s'assurer de l'absence de parallaxe.
- Agir sur l'éclairement de la lampe de bureau sur la feuille F pour que l'éclairement des images F' et A'B' soit voisin
- Placer alors la pointe fine d'un crayon sur F, son image se superpose à A'B'. On peut ainsi, en laissant l'oeil à l'oculaire, déplacer cette pointe sur le papier de manière à suivre le contour de l'image.

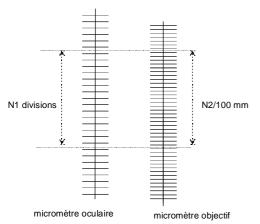
On obtient sur F une reproduction agrandie de l'objet, égale à A'B'.

2 Micromètre objectif:

Le micromètre objectif est une plaque de verre sur laquelle sont imprimées des graduations de 1/100 mm.

Attention : c'est un objet fragile et coûteux !

- Remplacer l'objet AB par un micromètre objectif.
- Ne pas toucher à F.
- Superposer A'B' et F' par manoeuvre du tube.
- Dessiner les deux divisions extrêmes du micromètre sur F.

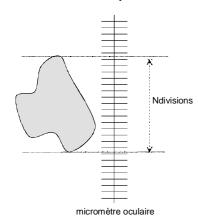

On obtient alors sur F deux dessins superposés : celui de l'objet et celui du micromètre à la même échelle.

Il ne reste qu'à évaluer la dimension de l'objet.

Utilisation d'un micromètre objectif et d'un micromètre oculaire :

On utilise un oculaire muni d'un micromètre. Le micromètre est situé dans le plan où se forme l'image objective. Les divisions du **micromètre oculaire** sont équidistantes mais leur écartement n'est pas connu. Les divisions du **micromètre objectif** sont données en 1/100 mm.

1 Etalonnage du micromètre oculaire à l'aide du micromètre objectif :

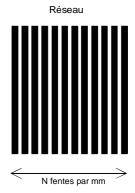


- Poser sur la platine le micromètre objectif de dimension connue.
- Observer les 2 micromètres.
- Déterminer combien de divisions du micromètre oculaire (N_1) recouvrent exactement de divisions du micromètre objectif (N_2) .

On prendra N_1 et N_2 aussi grands que possible pour avoir l'incertitude de mesure minimum.

- En déduire la dimension d'une graduation du micromètre oculaire.

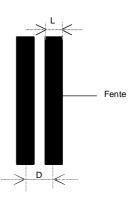
2 Mesure de l'objet :


- Remplacer le micromètre objectif par l'objet à mesurer.
- Faire la mise au point.

L'image de l'objet étudié, vue dans le plan du micromètre oculaire, recouvre N divisions du micromètre oculaire.

- Noter la valeur de N.
- En déduire la dimension de l'image observée. Ajouter l'unité de longueur.

<u>Réseau</u>


Un réseau est formé de N fentes identiques et parallèles.
On appelle pas du réseau le nombre de fentes par mm
Déterminer le pas du réseau en utilisant la méthode de la chambre claire.

Fentes de Fresnel

L'objet étudié est formé de 2 fentes identiques et parallèles Chaque fente a une largeur L.

La distance séparant les milieux des 2 fentes est égale à D. Mesurer L et D, en utilisant un micromètre oculaire.

