## Pendule de torsion

### 1 But

D terminer la constante de torsion d'un fil ; teudier la période d'un pendule de torsion.

### 2 Matériel

# 3 Étude statique

On appellera:

C : constante de torsion du fil

d : diamètre du fil l : longueur du fil

 G : module d'éasticit é de glissement du méal (ou module de Coulomb)

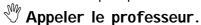
• α : angle de torsion du fil

Rappel: la constante de torsion d'un fil est donn é par la relation

$$C = \frac{\mathbf{p}}{32} \cdot \frac{d^4}{\ell} \cdot G$$

⇒ Placer l'appareil horizontalement.

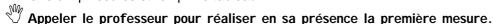
⇒ Accrocher le petit plateau et r áliser la mise àz éo.



Quand on place une masse m sur le plateau, il faut imposer une torsion a pour ramener la barre horizontalement. La barre est alors en équilibre sous l'action de deux moments antagonistes : le moment du couple de torsion et le moment du poids m g, de bras de levier L.

D terminer la relation donnant m en fonction de a, C, q et L.

⇒ Faire cing mesures et remplir le tableau :



| m (g) | 0 | 0,5 | 1 | 1,5 | 2 | 2,5 |
|-------|---|-----|---|-----|---|-----|
| a(9   |   |     |   |     |   |     |

Utiliser Regressi<sup>©</sup> pour tracer le graphique m = f(a). Déinir la constante L et donner sa valeur. Mod éiser par  $C*a*(\pi/180)/(9.81*L)*1000$ . En déuire une valeur de la constante de torsion C en préisant l'unit é

# Appeler le professeur.

Imprimer le tableau, les commentaires, le modèle et le graphique.

 $\Rightarrow$  Mesurer la longueur utile  $\mathbf{I}$  du fil (au r  $\mathbf{\acute{e}}$ let) et le diamètre d du fil (au palmer).

En d éduire le module de Coulomb G du m éal en pr écisant l'unit é

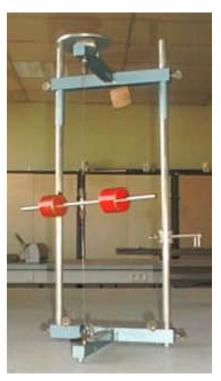
## 4 Étude dynamique

⇒ Placer l'appareil verticalement sans d énonter le fil des mandrins.

La barre peut être lest **é** par deux masselottes de masse *m*. Ces masselottes doivent être **é**quidistantes du fil *On appellera* :

- $J_0$ : moment d'inertie de la barre seule par rapport à l'axe de rotation
- J: moment d'inertie de la barre avec surcharges
- $T_0$ : p éiode du mouvement de la barre seule
- T: p éiode du mouvement de la barre avec surcharges

Rappel: la p éiode d'un pendule de torsion est donn épar la relation  $T=2{\bm p}\cdot\sqrt{\frac{J}{C}}$ 



#### 4.1 Isochronisme des oscillations

Les oscillations sont isochrones si leur p éiode ne d épend pas de l'amplitude.

La barre est sans surcharge.



# $\stackrel{\text{\tiny M}}{\sim}$ Appeler le professeur pour réaliser en sa présence la première mesure.

 $\Rightarrow$  Écarter la barre de sa position d'équilibre d'un angle  $a \approx 20$  °puis  $a \approx 90$  °et mesurer chaque fois la dur ée de 10 oscillations. Conclure.

En déduire la péiode  $T_0$ .

### 4.2 Variation de la période en fonction du moment d'inertie

#### 4.2.1 Principe

La barre est munie de deux surcharges de masse m plac és à égale distance a du centre de la barre. On donne la p éiode des oscillations du système en fonction de a :

$$T = 2\pi \sqrt{\frac{(2ma^2 + J_b + 2J_s)}{C}}$$

 $J_b$ : moment d'inertie de la barre par rapport à l'axe de rotation,

 $J_s$ : moment d'inertie d'une surcharge par rapport à un axe parallèle à l'axe de rotation passant par le centre d'inertie de la surcharge.

On donne:

- $J_b = M L^2/12$   $J_s = 7.4 \cdot 10^{-5} \text{ kg m}^2$

## 4.2.2 Étude expérimentale

⇒ Pour diff éentes distances a, mesurer la p éiode T comme pr é élemment.



 $^{ ilde{\mathbb{W}}}$  Appeler le professeur pour réaliser en sa présence la première mesure.

| a (mm)   | 40 | 60 | 80 | 100 | 120 |
|----------|----|----|----|-----|-----|
| 10×T (s) |    |    |    |     |     |
| T(s)     |    |    |    |     |     |

Utiliser Regressi<sup>©</sup> pour cr éer les variables T2 = T\*T et a2 = a\*a. Tracer le graphique  $T^2 = f(a^2)$ .

Quelle est la forme de ce graphique ?

Mod éiser et en d éluire une valeur de la constante de torsion C.

Comparer cette valeur de C avec celle obtenue dans l'éude statique.



# Appeler le professeur.

Imprimer le tableau, les commentaires, le modèle et le graphique.

Calculer la valeur thérique du moment d'inertie de la barre par rapport à l'axe de rotation sachant que la masse de la barre est M = 68 q et sa longueur L = 30 cm.

Comparer la valeur exp éimentale de  $J_b$  avec sa valeur th éprique. Conclure.



Remettre le poste de travail dans l'état initial.