SEVENTH SERIES. § 11. On Electro-chemical Decomposition, continued*. ¶ iv. On some general conditions of Electro-decomposition. ¶ v. On a new Measurer of Volta-electricity. ¶ vi. On the primary or secondary character of bodies evolved in Electro-decomposition. ¶ vii. On the definite nature and extent of Electro-chemical Decompositions. § 13. On the absolute quantity of Electricity associated with the particles or atoms of Received January 9,-Read January 23, February 6 and 13, 1834. ## Preliminary. 661. The theory which I believe to be a true expression of the facts of electro-chemical decomposition, and which I have therefore detailed in a former series of these Researches, is so much at variance with those previously advanced, that I find the greatest difficulty in stating results, as I think, correctly, whilst limited to the use of terms which are current with a certain accepted meaning. Of this kind is the term pole, with its prefixes of positive and negative, and the attached ideas of attraction and repulsion. The general phraseology is that the positive pole attracts oxygen, acids, &c., or more cautiously, that it determines their evolution upon its surface; and that the negative pole acts in an equal manner upon hydrogen, combustibles, metals, and bases. According to my view, the determining force is not at the poles, but within the body under decomposition; and the oxygen and acids are rendered at the negative extremity of that body, whilst hydrogen, metals, &c., are evolved at the positive extremity (518, 524.). 662. To avoid, therefore, confusion and circumlocution, and for the sake of greater precision of expression than I can otherwise obtain, I have deliberately considered the subject with two friends, and with their assistance and concurrence in framing [•] Refer to the note after 1047, Series VIII .- Dec. 1838. them, I purpose henceforward using certain other terms, which I will now define. The poles, as they are usually called, are only the doors or ways by which the electric current passes into and out of the decomposing body (556.); and they of course, when in contact with that body, are the limits of its extent in the direction of the current. The term has been generally applied to the metal surfaces in contact with the decomposing substance; but whether philosophers generally would also apply it to the surfaces of air (465.471.) and water (493.), against which I have effected electro-chemical decomposition, is subject to doubt. In place of the term pole, I propose using that of Electrode*, and I mean thereby that substance, or rather surface, whether of air, water, metal, or any other body, which bounds the extent of the decomposing matter in the direction of the electric current. 663. The surfaces at which, according to common phraseology, the electric current enters and leaves a decomposing body, are most important places of action, and require to be distinguished apart from the poles, with which they are mostly, and the electrodes, with which they are always, in contact. Wishing for a natural standard of electric direction to which I might refer these, expressive of their difference and at the same time free from all theory, I have thought it might be found in the earth. If the magnetism of the earth be due to electric currents passing round it, the latter must be in a constant direction, which, according to present usage of speech, would be from east to west, or, which will strengthen this help to the memory, that in which the sun appears to move. If in any case of electro-decomposition we consider the decomposing body as placed so that the current passing through it shall be in the same direction, and parallel to that supposed to exist in the earth, then the surfaces at which the electricity is passing into and out of the substance would have an invariable reference, and exhibit constantly the same relations of powers. Upon this notion we purpose calling that towards the east the anode+, and that towards the west the cathode;; and whatever changes may take place in our views of the nature of electricity and electrical [•] ήλεκτρον, and όδος a way. ⁺ ἄνω upwards, and όδοs a way; the way which the sun rises. t karà downwards, and odos a way; the way which the sun sets. action, as they must affect the natural standard referred to, in the same direction, and to an equal amount with any decomposing substances to which these terms may at any time be applied, there seems no reason to expect that they will lead to confusion, or tend in any way to support false views. The anode is therefore that surface at which the electric current, according to our present expression, enters: it is the negative extremity of the decomposing body; is where oxygen, chlorine, acids, &c., are evolved; and is against or opposite the positive electrode. The cathode is that surface at which the current leaves the decomposing body, and is its positive extremity; the combustible bodies, metals, alkalies, and bases, are evolved there, and it is in contact with the negative electrode. 664. I shall have occasion in these Researches, also, to class bodies together according to certain relations derived from their electrical actions (822.); and wishing to express those relations without at the same time involving the expression of any hypothetical views, I intend using the following names and terms. Many bodies are decomposed directly by the electric current, their elements being set free; these I propose to call electrolytes*. Water, therefore, is an electrolyte. The bodies which, like nitric or sulphuric acids, are decomposed in a secondary manner (752. 757.), are not included under this term. Then for electro-chemically decomposed, I shall often use the term electrolyzed, derived in the same way, and implying that the body spoken of is separated into its components under the influence of electricity: it is analogous in its sense and sound to analyze, which is derived in a similar manner. The term electrolytical will be understood at once: muriatic acid is electrolytical, boracid acid is not. 665. Finally, I require a term to express those bodies which can pass to the electrodes, or, as they are usually called, the poles. Substances are frequently spoken of as being electronegative, or electro-positive, according as they go under the supposed influence of a direct attraction to the positive or negative pole. But these terms are much too significant for the use to which I should have to put them; for though the meanings are perhaps right, they are only hypothetical, and may be wrong; and then, through a very imperceptible, but still very dangerous, ^{*} ήλεκτρον, and λύω, solvo. N. Electrolyte, V. Electrolyze. because continual, influence, they do great injury to science, by contracting and limiting the habitual views of those engaged in pursuing it. I propose to distinguish such bodies by calling those anions* which go to the anode of the decomposing body; and those passing to the cathode, cations; and when I have occasion to speak of these together, I shall call them ions. Thus the chloride of lead is an electrolyte, and when electrolyzed evolves the two ions, chlorine and lead, the former being an anion, and the latter a cation. 666. These terms being once well-defined, will, I hope, in their use enable me to avoid much periphrasis and ambiguity of expression. I do not mean to press them into service more frequently than will be required, for I am fully aware that names are one thing and science another. 667. It will be well understood that I am giving no opinion respecting the nature of the electric current now, beyond what I have done on former occasions (283, 517.); and that though I speak of the current as proceeding from the parts which are positive to those which are negative (663.), it is merely in accordance with the conventional, though in some degree tacit, agreement entered into by scientific men, that they may have a constant, certain, and definite means of referring to the direction of the forces of that current. ## ¶ iv. On some general conditions of Electro-chemical Decomposition. 669. From the period when electro-chemical decomposition was first effected to the present time, it has been a remark, that those elements which, in the ordinary phenomena of chemical affinity, were the most directly opposed to each other, and combined with the greatest attractive force, were those which were the most readily evolved at the opposite extremities of the decomposing bodies (549.). 670. If this result was evident when water was supposed to be essential to, and was present in, almost every case of such [·] duw that which goes up. (Neuter participle.) [†] κατιών that which goes down. [‡] Since this paper was read, I have changed some of the terms which were first proposed, that I might employ only such as were at the same time simple in their nature, clear in their reference, and free from hypothesis. decomposition (472.), it is far more evident now that it has been shown and proved that water is not necessarily concerned in the phenomena (474.), and that other bodies much surpass it in some of the effects supposed to be peculiar to that substance. 671. Water, from its constitution and the nature of its elements, and from its frequent presence in cases of electrolytic action, has hitherto stood foremost in this respect. Though a compound formed by very powerful affinity, it yields up its elements under the influence of a very feeble electric current; and it is doubtful whether a case of electrolyzation can occur, where, being present, it is not resolved into its first principles. 672. The various oxides, chlorides, iodides, and salts, which I have shown are decomposable by the electric current when in the liquid state, under the same general law with water (402.), illustrate in an equally striking manner the activity, in such decompositions, of elements directly and powerfully opposed to each other by their chemical relations. 673. On the other hand, bodies dependent on weak affinities very rarely give way. Take, for instance, glasses: many of those formed of silica, lime, alkali, and oxide of lead, may be considered as little more than solutions of substances one in another*. If bottle-glass be fused, and subjected to the voltaic pile, it does not appear to be at all decomposed (408.). If flint glass, which contains substances more directly opposed, be operated upon, it suffers some decomposition; and if borate of lead glass, which is a definite chemical compound, be experimented with, it readily yields up its elements (408.). 674. But the result which is found to be so striking in the instances quoted is not at all borne out by reference to other cases where a similar consequence might have been expected. It may be said, that my own theory of electro-chemical decomposition would lead to the expectation that all compound bodies should give way under the influence of the electric current with a facility proportionate to the strength of the affinity by which their elements, either proximate or ultimate, are combined. I am not sure that that follows as a consequence of the theory; but if the objection is supposed to be one presented by the facts, I have no doubt it will be removed when we obtain a ^{*} Philosophical Transactions, 1830, p. 49.