SESSION DE 2001

concours interne de recrutement de professeurs agrégés et concours d'accès à l'échelle de rémunération

section: sciences physiques

composition sur la physique et le traitement automatisé de l'information

Durée : 5 heures

Calculatrice électronique de poche, y compris programmable, alphanumérique ou à écran graphique, à fonctionnement autonome, non imprimante, autorisée conformément à la circulaire n° 99-186 du 16 novembre 1999.

L'usage de tout document et de tout autre matériel électronique est rigoureusement interdit.

En aucune façon la calculatrice ne pourra posséder des données scientifiques et techniques propres aux sciences physiques.

Si au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale dans sa copie et poursuit sa composition en indiquant les raisons des initiatives personnelles qu'il est amené à prendre pour cela.

Le sujet comporte quatre parties impliquant un constituant commun mais vital, l'eau.

- I- Electrostatique et interactions de molécules d'eau.
- II- Electromagnétisme et propagation des ondes électromagnétiques dans l'eau.
- III- Optique, vision sous marine et arc en ciel.
- IV- Thermodynamique, cycle de l'eau dans une centrale électrique.

Les quatre parties sont indépendantes et doivent être traitées sur feuilles séparées.

I -Electrostatique

La loi de Coulomb, considérée comme le postulat fondamental de l'électrostatique, s'écrit :

$$\vec{F}_{12} = \frac{1}{4\pi\varepsilon_0} q_1 q_2 \frac{\vec{u}_{12}}{r_{12}^2}$$

 \dot{u}_{12} est le vecteur unitaire dirigé de la charge ponctuelle q_1 vers la charge ponctuelle q_2 , r_{12} est la distance séparant les deux charges.

$$\frac{1}{4\pi\varepsilon_0} = 9.10^9 \text{ SI} \qquad e = 1.6 \cdot 10^{-19} \text{ C} \quad \text{(charge élémentaire)}$$

Dans tout le problème, on posera que :

- toutes les charges q sont ponctuelles,
- le potentiel créé par une charge q est nul à l'infini,
- l'énergie potentielle de deux charges infiniment éloignées est nulle.

1- Champ électrique

- 1.1- Définir le champ électrique \overrightarrow{E} (M) créé en M par la charge q_1 placée en O origine d'un repère fixe.
- 1.2- Définir le champ électrique \vec{E} (M) créé en M par n charges q_i. Quel principe appliquez-vous ?
- 1.3- Généraliser à une distribution de charges, linéique λ , surfacique σ et volumique ρ , distributions que l'on définira.
- 1.4- Soient deux charges $q_1 = q_2$ et leur plan de symétrie (P). Considérons deux points M_1 et M_2 symétriques par rapport à (P). Quelles relations existe-t-il entre les composantes perpendiculaires et parallèles au plan (P) aux points M_1 et M_2 respectivement $\overrightarrow{E}_{\perp}(M_1)$, $\overrightarrow{E}_{\parallel}(M_1)$ et $\overrightarrow{E}_{\perp}(M_2)$, $\overrightarrow{E}_{\parallel}(M_2)$.

Quelle conséquence peut-on en déduire si les deux points se confondent en M point appartenant au plan de symétrie. Généraliser à deux distributions volumiques ρ_1 et ρ_2 symétriques par rapport à (P). Conclusion.

2- Potentiel et énergie potentielle

- 2.1- Soit une charge q_1 placée à l'origine d'un repère de centre O. Calculer le travail infinitésimal δW de la force électrique exercée par la charge q_1 sur une charge q_2 lorsque cette dernière est déplacée de \overrightarrow{dl} (on pourra exprimer \overrightarrow{dl} en coordonnées sphériques). Calculer les travaux de la force électrostatique W(1,2) et W lorsque la charge q_2 est déplacée, d'une part de $\overrightarrow{OM}_1 = \overrightarrow{r_1}$ à $\overrightarrow{OM}_2 = \overrightarrow{r_2}$, d'autre part de l'infini jusqu'à un point M tel que $\overrightarrow{OM} = \overrightarrow{r}$.
- 2.2- Définir la différentielle de l'énergie potentielle dU pour ce déplacement \overrightarrow{dl} de q_2 . Exprimer $U(M_2)$ - $U(M_1)$, puis U(M) pour les deux déplacements précédents. Montrer que U se met sous la forme $U = q_2 \ V_1$. Expliciter V_1 .
 - 2.3- Déterminer la relation liant \vec{E} et V.
 - 2.4- Généraliser l'expression de V à n charges q_i, puis à une distribution volumique p.
- 2.5- Calculer l'énergie potentielle de 3 charges q_1 , q_2 et q_3 placées dans la configuration des atomes de l'eau H_2O (distance OH = 0.1 nm et $(OH_1,OH_2) = 104^\circ$), $q_{H1} = +0.33$ e, $q_{H2} = +0.33$ e et $q_0 = -0.66$ e.

3- Flux du vecteur champ à travers une surface

- 3.1- Définir le flux élémentaire d ϕ du champ \overrightarrow{E} créé par une charge q placée en O à travers une surface élémentaire \overrightarrow{dS} . En déduire le flux ϕ de ce même champ à travers une surface fermée quelconque (S) dans les deux cas suivants : la charge est intérieure ou extérieure à (S).
- 3.2- Généraliser à n charges, aux distributions linéique λ , surfacique σ et volumique ρ . Enoncer le théorème de Gauss.

4- Applications

- 4.1- Une sphère de centre O et de rayon R contient des charges dont la distribution volumique ρ est homogène. Déterminer la direction du champ \overrightarrow{E} et la variable dont dépend la norme de E. Calculer en tout point de l'espace le champ \overrightarrow{E} (M). Représenter la norme de \overrightarrow{E} en fonction de la variable.
- 4.2- En déduire le potentiel V(M) en tout point de l'espace. Tracer la courbe V(M) en fonction de la variable.
- 4.3- Calculer l'énergie potentielle U_p de cette distribution. On pourra construire le système par couches successives.
- 4.4- Cette sphère possède maintenant une cavité de centre O' et de rayon R' telle que : R-R' > OO' > 0. Calculer le champ dans la cavité.

5- Le dipôle électrique

Le dipôle électrique considéré est constitué de deux charges -q et +q, placées en deux points de l'axe Ox, A_1 et A_2 d'abscisses -a et +a. On étudie le champ électrique $\stackrel{\longrightarrow}{E}$ (M) et le potentiel V(M) du point M situé dans le plan (Ox,Oy) tel que OM >> 2a.

Le point M est repéré par ses coordonnées polaires $\overrightarrow{OM} = \overrightarrow{u_r}$, (Ox, OM) = θ .

On appelle moment dipolaire le vecteur $\overline{p} = q \cdot \overline{A_1 A_2}$

- 5.1- Calculer le potentiel V(M) créé par le dipôle au point M, au 1er ordre.
- 5.2- En déduire les composantes du champ électrique.
- 5.3- Déterminer l'équation polaire des équipotentielles et des lignes de champ. Donner l'allure de ces courbes. Où placez-vous l'équipotentielle $V \equiv 0$.

6- Molécule polaire : cas de la molécule d'eau.

L'atome d'oxygène étant électronégatif et les atomes d'hydrogène électropositifs, un modèle de représentation consiste à placer une charge ponctuelle +q=0,33e sur chaque atome d'hydrogène (H_1 et H_2) et une charge -2q=-0,66e sur l'atome d'oxygène (O). La distance entre les atomes O et H est 2a=0.0958 nm et l'angle entre les deux liaisons est 104° .

La définition du moment dipolaire est : $\overrightarrow{p} = \sum_{i} q_{i}$. \overrightarrow{OM}_{i} .

- 6.1- Montrer que le moment dipolaire d'un ensemble neutre de charges est indépendant de l'origine 1. Calculer le moment dipolaire de la molécule d'eau. Faire l'application numérique.
- 6.2- La molécule d'eau est placée dans un champ électrique qui n'est pas uniforme. On appelle \vec{E} (\vec{r}) le champ au centre de l'atome d'oxygène et \vec{E} $(\vec{r}+\vec{r}_1)$, \vec{E} $(\vec{r}+\vec{r}_2)$, respectivement le champ en H_1 et H_2 .
 - 6.2.1- Exprimer la résultante des forces \overrightarrow{F} agissant sur la molécule.
 - 6.2.2- Exprimer la composante Fx en faisant un développement au 1er ordre.
 - 6.2.3- Montrer que la résultante des forces est :

$$\vec{F} = (\vec{p} \cdot \overrightarrow{grad})\vec{E}$$
 puis $\vec{F} = \overrightarrow{grad}(\vec{p} \cdot \vec{E})$

En déduire l'énergie potentielle U_p du dipôle dans le champ électrique. Commenter ce résultat (stabilité des orientations du moment dipolaire).

6,3- Interaction de deux molécules d'eau

Les deux molécules sont représentées par leur seul moment dipolaire. Une molécule d'eau, fixe, placée en O, a son moment dipolaire \overrightarrow{p} orienté dans la direction et le sens de l'axe Ox. Une deuxième molécule d'eau située dans le plan (Ox,Oy), au point M de coordonnées polaires (ρ , θ ₁). Son seul mouvement est la rotation et son orientation est définie par l'angle θ ₂ = (\overrightarrow{OM} , \overrightarrow{p} ₂)

- 6.3.1- Exprimer l'énergie potentielle du dipôle $\overrightarrow{p_2}$ en équilibre stable dans le champ $\overline{E_1}$ du dipôle $\overline{p_1}$.
- 6.3.2- En position d'équilibre $\theta_{2\text{eq}}=\theta_2=(\overrightarrow{OM},\overrightarrow{p_2})$. Exprimer la relation entre $\theta_{2\text{eq}}$ et θ_1 . Calculer $\theta_{2\text{eq}}$ pour $\theta_1=0,\,\pi/4$ et $\pi/2$

- 6.3.3- Pour quelle valeur de θ_1 cette énergie est-elle minimale ? Quelle est alors la force entre ces deux dipôles ?
- 6.3.4- A.N : calculer cette énergie minimale si les deux molécules d'eau sont distantes de 0,3nm.

II- Electromagnétisme

On rappelle les expressions suivantes :

théorème de Green-Ostrogradski :
$$\oint_{S} \overrightarrow{E} d\overrightarrow{S} = \iiint_{V} div \overrightarrow{E} d\tau$$

- théorème de Stokes :
$$\oint_{C} \vec{B} \cdot d\vec{l} = \iint_{S} rot \vec{B} \cdot \vec{dS}$$

-
$$\overrightarrow{\text{rot. rot}} = \overrightarrow{\text{grad div}} - \overrightarrow{\Delta}$$
 - $\overrightarrow{\text{div.rot}} = 0$

1- Equations de Maxwell dans le vide

L'espace contient des charges de densité volumique p. Il est parcouru par des courants.

- 1.1- Rappeler la définition du vecteur densité de courant \vec{j}_{cond} . Exprimer \vec{j}_{cond} en fonction de I
- 1.2- Etablir l'expression locale du théorème de Gauss.
- 1.3- Etablir l'équation locale de la conservation de la charge .
- 1.4- On peut montrer que div $\overrightarrow{B}=0$. Montrer que le flux de \overrightarrow{B} à travers une surface fermée est nul. Quelle différence fondamentale existe-t-il entre \overrightarrow{E} et \overrightarrow{B} ?
 - 1.5-Rappeler le théorème d'Ampère (magnétostatique). Exprimer \overrightarrow{rot} \overrightarrow{B} en fonction de $\overrightarrow{j}_{cond}$.
- 1.6- Rappeler la loi de Faraday (régime variable). En déduire l'expression du rotationnel de \bar{E} (équation de Maxwell-Faraday).
- 1.7- Montrer qu'en régime variable, le théorème d'Ampère n'est plus valable et qu'il faut tenir compte d'un courant de déplacement. (On admettra, comme Maxwell, que le théorème de Gauss local s'applique en régime variable).

2- Courant de polarisation dans un milieu polaire

2.1- Rappel du courant de conduction

Définir le vecteur \vec{j}_{cond} si le milieu conducteur contient deux types de porteurs, +q et -q, de même concentration volumique n.

2.2- Courant de polarisation

Le milieu est constitué de molécules d'eau, polaires, dont la concentration volumique est n. La molécule peut être modélisée par deux charges électriques de charges respectives, q, = +0.66e et q = -0.66e, situées d'une part sur l'oxygène, d'autre part au barycentre des atomes d'hydrogène (voir problème 1).

- 2.2.1- Le moment dipolaire du système constitué de N molécules est $\overrightarrow{P} = \sum_{i}^{N} \overrightarrow{p_{i}}$. En dehors de tout champ électrique extérieur $\sum_{i}^{N} \overrightarrow{p_{i}} = \overrightarrow{0}$ pour tout volume macroscopique $\delta \tau$. Justifier cette affirmation.
- 2.2.2- On appelle polarisation \overrightarrow{P} le vecteur défini par : $\delta \overrightarrow{P} = \overrightarrow{P}$. $\delta \tau$ Les deux centres électriques positif et négatif ont un déplacement moyen respectif \overrightarrow{dl}_+ et \overrightarrow{dl}_- durant l'intervalle de temps dt.

Exprimer $\frac{\overline{dP}}{dt}$ dû aux déplacements des charges durant dt. En déduire le courant de polarisation, \vec{j}_{Pol} .

3- Equations de Maxwell dans un diélectrique

Le milieu est neutre. Sous l'action d'un champ électrique les dipôles ont tendance à s'orienter dans la direction du champ électrique. On montre que le vecteur polarisation est proportionnel au champ électrique et peut s'écrire suivant l'expression : $\overrightarrow{P} = (\varepsilon_r - 1)\varepsilon_0 \overrightarrow{E}$ (matériau diélectrique, Linéaire, Homogène et Isotrope). ε_r est la permittivité relative du milieu.

- 3.1- Ecrire les équations de Maxwell en utilisant les vecteurs \overrightarrow{E} , \overrightarrow{B} et le vecteur \overrightarrow{j}_{pol} , puis on éliminera \overrightarrow{j}_{pol} .
 - 3.2- En déduire les équations de propagation des champs \overrightarrow{E} et \overrightarrow{B} .

4- Propagation des ondes électromagnétiques dans l'eau

4.1- L'onde se propageant est une onde électromagnétique définie par son champ électrique :

$$\vec{E}$$
 (z,t) = $E_0 \vec{u}_x \exp i(kz - \omega t)$.

Déterminer l'expression du champ magnétique \overline{B} . Caractériser l'onde électromagnétique.

4.2- Déterminer l'équation de dispersion k(ω). Quelle est la vitesse de phase v_o si k est réel ? En déduire l'indice n de l'eau.

 $A.N.: \epsilon_r = 1.8 \ pour \ \omega = 4.10^{15} \ rad.s^{-1} \qquad \qquad \epsilon_r = 81 \ pour \ \omega = 10^5 \ rad.s^{-1}. \ De \ quels \ types \ d'onde s'agit-il ?$

4.3- Le milieu est absorbant et k est complexe : k = k' + ik''

Exprimer le champ \vec{E} puis le champ \vec{B} en fonction de ω , k' et k''.

4.4- En déduire le vecteur de Poynting moyen $< \overrightarrow{\Pi} >$. Calculer la longueur de pénétration caractéristique δ de la puissance transportée.

 $A_sN_s = Pour \omega = 1010 \text{ rad.s}^{-1}$, $k' = 200 \text{ rad.m}^{-1}$ et $k'' = 100 \text{ rad.m}^{-1}$.

Quel est le problème de communication avec les sous-marins?

III- Optique

1- Dioptre plan

Dans le paragraphe, nous admettrons que la vitesse de propagation de la lumière dans l'air est égale à celle dans le vide : $c = 3.00 \cdot 10^8$ m/s

Milieu 1 : cau milieu 2 : air

On prendra: $n_1 = 1,335$ (indice de l'eau) $n_2 = 1$ (indice de l'air)

Une surface plane sépare deux milieux homogènes, l'air et l'eau.

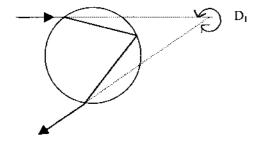
- 1.1- Rappeler les deux lois de SNELL-DESCARTES concernant la réfraction.
- 1.2 Quelle la signification physique de l'indice d'un milieu ? Définir l'indice.
- 1.3- Une source émet une radiation de fréquence $f = 6,67 \cdot 10^{14}$ Hz. Quelle est sa longueur d'onde dans le vide λ_{yy} dans l'eau λ_{e} ?
- 1.4- Existe-t-il un angle de réfraction limite i₁? Quelle est sa valeur? Quel est alors le sens de propagation de la lumière ?
- 1.5- Un objet ponctuel A est situé dans l'eau à la profondeur y. Déterminer la position y' de l'image A' en fonction des angles i₁ et i₂, angles définies par rapport à la normale dans le milieu 1 et dans le milieu 2.

Définir le stigmatisme. Y a-t-il stigmatisme rigoureux ? Quelle est la condition de stigmatisme approché ? L'image d'un objet situé dans l'eau est-elle déformée ? Commenter votre réponse.

I-6 Un plongeur sous-marin observe un poisson sous l'eau situé à la distance 1m de ses yeux. Caractériser l'image observée.

2- L'eau, le soleil et la dispersion : arc-en-ciel

2.1- Phénomène élémentaire.



Un faisceau de lumière parallèle, monochromatique de longueur d'onde λ , éclaire dans l'air une sphère d'eau d'indice $n_{\lambda}=1,335$. Les rayons pénètrent dans la sphère, effectuent p réflexions et ressortent de la sphère.

- 2.1.1- On donne ci-dessus le trajet d'un rayon lumineux d'incidence i et ne se réfléchissant qu'une seule fois dans la sphère. Quelle est la déviation D_1 du rayon sortant?
 - 2.1.2- Calculer la déviation D_p d'un rayon ayant subi p réflexions en fonction de i et de r?
- 2.1.3- Montrer que la déviation est minimale, D_{mp} , pour $i=i_0$, lorsque di/dr = p+1. En déduire sin i_0 . A.N. : calculer i_0 et D_{mp} pour p=1,2 et 3.

2.1.4- Interpréter qualitativement l'existence d'un maximum énergétique au minimum de déviation. On pourra, sur une figure, montrer les directions d'émergence de deux rayons d'incidence i₀-di et i₀+di.

Qu'observe-t-on sur les murs de la salle d'expérience ? Quel est le lieu géométrique des maxima d'intensité pour p = 1, p = 2 et p = 3 ? Caractériser qualitativement leur intensité.

- 2.2- Le soleil considéré comme une source ponctuelle (S), située à une hauteur angulaire α au dessus de l'horizon, éclaire une vaste zone de pluie. Les gouttes d'eau sont supposées sphériques. On ne tient pas compte de la dispersion : n=1,335 pour toutes les radiations émises par le soleil. On prendra $\alpha=15$ ° pour les applications numériques
- 2.2.1- Quelle est la répartition géométrique des gouttes qui apparaissent brillantes à un observateur situé au point O pour p=1 et p=2.
- 2,2.2- Déterminer les rayons angulaires θ_1 et θ_2 des deux arcs. Quelles sont les hauteurs angulaires maximales, β_1 et β_2 , des deux arcs vus par l'observateur. Diffèrent-ils si l'observateur s'approche de la zone de pluie ?
- 2.2.3- Comparer leurs intensités relatives. Pourquoi le troisième arc (p = 3) n'est pratiquement jamais visible ?
- 2.3- On tient compte de la dispersion, et l'indice de l'eau pour la radiation rouge est n_r =1,330 et n_v =3,340 pour la radiation violette.
 - 2.3.1- Calculer dD_{nr}/dn en fonction de r, n et p pour une valeur $i=i_0$.
- 2.3.2- Calculer dD_m variation de la déviation minimale entre le rouge et le violet pour p=1 et p=2. Représenter, dans un plan vertical passant par l'axe soleil-observateur, les zones rouge et violette des deux arcs.
- 2.3.3- Le soleil a un diamètre angulaire de 0,5°. Quelle est l'influence de la dimension de la source sur les deux arcs ?

IV- Thermodynamique

Les centrales électriques sont des machines fonctionnant entre une source chaude à la température T_c du foyer où a lieu la combustion, et une source froide, constituée par l'eau d'un fleuve à la température T_f . La centrale fournit à l'alternateur une puissance \boldsymbol{P}_c . Le fluide caloporteur utilisé dans ce problème est l'eau.

Hypothèses :

régime stationnaire : même débit en tout point de l'écoulement.

- écoulement lent : variation d'énergie cinétique nulle.
- variation d'énergie potentielle macroscopique nulle .

On prendra $T(K)=t(^{\circ}C)+273$, pour la température.

R=8,314 J.mol-1,K-1.

1- Généralités

- 1.1- Les centrales thermiques classiques et les centrales nucléaires ne diffèrent que par la nature du combustible utilisé pour faire fonctionner la chaudière. Quel est-il dans chaque cas ?
 - 1.2- Le fluide caloporteur décrit le cycle moteur ditherme décrit figure 1.

12 : compression adiabatique

23: chauffage isotherme

34 : détente adiabatique

41: condensation isotherme

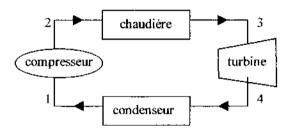


Figure 1

L'eau se vaporise au niveau de la chaudière et se liquéfie au niveau du condenseur.

- 1.2.a) Que signifie chauffage isotherme pour la transformation 23 ? Justifier la distinction entre chauffage et augmentation de température.
 - 1.2.b) Préciser les définitions de travail W et de transfert thermique Q.
- 1.2.c) Reproduire la figure 1 en indiquant le sens des transferts d'énergie (travaux W_c du condenseur et W_t de la turbine et transferts thermiques Q_c au niveau de la source chaude et Q_f au niveau de la source froide). D'où vient l'énergie reçue par l'alternateur ?
 - 1.2.d) Définir l'énergie interne U et l'entropie S d'un système fermé.
- Ecrire le premier et le deuxième principe de la thermodynamique pour un système fermé dans le cas général, puis avec les hypothèses énoncées plus haut, où la variation d'énergie macroscopique est nulle.
- 1.2.e) Préciser quelle distinction existe entre fonctions d'état (exemple U) et grandeurs d'échange (exemple Q). L'entropie S est-elle une fonction d'état ou une grandeur d'échange? Le travail W est-il une fonction d'état ou une grandeur d'échange?

2- Etude du cycle de Carnot

On étudie le cycle de Carnot, constitué de deux adiabatiques réversibles et de deux isothermes réversibles :

- 12 : compression adiabatique réversible,
- 23 : évolution isotherme réversible,
- 34 : détente adiabatique réversible,
- 41 : évolution isotherme réversible.

2.A) Cas général.

- 2.A.1- Que deviennent les expressions des deux premiers principes dans le cas de notre cycle réversible?
- 2.A.2- Que dire de l'entropie S du fluide pour les transformations adiabatiques et réversibles 12 et 34 ? Justifier.
 - 2 A 3- Calcul du rendement.
 - Définir le rendement R_0 du moteur en fonction de W et $Q_c = Q_{23}$. Justifier le signe.
 - Donner R_0 en fonction de Q_c et $Q_f = Q_{41}$, puis en fonction de T_c et T_f A.N. : Calculer le rendement R_0 pour $t_c = 264$ °C et $t_f = 35$ °C.
- 2.B- On se propose de retrouver ce rendement dans le cas d'un gaz parfait en calculant Q_c et Q_f . Le fluide ne subit donc pas de changements de phase dans cette question. C'est un gaz parfait au cours de l'ensemble des transformations du cycle de Carnot.
 - 2.B.1- Donner l'équation d'état d'un gaz parfait.
- 2.B.2- Démontrer la loi de Laplace $TV^{\gamma-1}$ = constante au cours d'une transformation adiabatique réversible du gaz parfait, avec γ = constante que l'on définira. En déduire la relation entre P, V et γ .
- 2.B.3- Tracer l'allure des diagrammes de Clapeyron (P,V) et entropique (T,S) pour le cycle de Carnot décrit par un gaz parfait, en gardant les numéros 1 à 4 correspondant au cycle étudié précédemment. On précisera l'équation de chaque portion de courbe.
- 2.B.4- Calculer le transfert thermique Q au cours d'une transformation réversible isotherme (à la température T_0) d'un gaz parfait depuis le volume V_a jusqu'au volume V_b . On introduira le nombre de moles n et la constante des gaz parfaits R. Exprimer Q_f et Q_c pour le cycle étudié.

- 2.B.5- De la loi de Laplace énoncée en II-B.2), déduire la relation, pour le cycle étudié, entre T_c , T_6 V_1 et V_2 d'une part (en faisant intervenir γ) et entre T_c , T_6 V_3 et V_4 d'autre part.
 - 2.B.6- En déduire Qf/Qc en fonction Tc et Tf
- 2.B.7- Reprendre l'expression du rendement R_0 en fonction de Q_c et Q_f , et l'exprimer en fonction de T_c et T_f . Conclusion ?
- 2.C- On se propose de retrouver ce rendement dans le cas du cycle décrit en I (cf figure 1). L'eau subit alors des changements d'état au cours du cycle, toujours supposé réversible.
- 2.C.1- On donne le tableau de données extrait du « Handbook of Chemistry and Physics » concernant l'eau, sous forme de liquide saturé et de vapeur saturée. Nous pouvons y lire pour 7 températures :
- La pression de vapeur saturante en bars (1 bar=10⁵Pa).
- Les volumes, enthalpies et entropies massiques du liquide saturant (indice l), et de la vapeur saturante (indice v).

t(°C)	P _s (bar)	v _I (l/kg)	v _s (l/kg)	h _l (kJ/kg)	s _I (kJ/kgK)	h _g (kJ/kg)	s _g (kJ/kgK)
0	0,0061	1,00	208 000	0	0	_	-
35	0,055	1,01	25 500	140	0,505	2 565	8,35
100	1,00	1,05	1 690	419	1,31	2 676	7,36
180	9,90	1,14	195	763	2,14	2 776	6,58
264	50,4	1,30	39,7	1157	2,92	2 790	5,97
300	84,6	1,41	21,8	1345	3,25	2 751	5,71
374	218	3,19	3,19	2107	4,44	2 107	4,44

- 2.C.1.a) Définir les notions de liquide saturant et de vapeur saturante.
- 2.C.1.b) Définir la fonction d'état enthalpie H.
- 2.C.1.c) Commenter les valeurs et les variations de volume de l'eau liquide et de la vapeur saturante en fonction de la pression. La vapeur d'eau se comporte-t-elle comme un gaz parfait ? Quel est l'écart relatif à 264°C ?
 - 2.C.1.d) On donne la courbe log(P_s) en fonction de log(v). Pourquoi utiliser des log?
 - 2.C.1.e) On donne la courbe t(°C) en fonction de s. Comment appelle-t-on cette courbe ? Que
- représente $\int_{1}^{2} Tds$ avec T la température thermodynamique en Kelvin?
- 2.C.1.f) Sur chaque courbe placer les états homogènes par un L pour liquide et par un V pour vapeur, et l'état hétérogène par L+V.
 - 2.C.1.g) Qu'appelle-t-on courbe de rosée et courbe d'ébullition ?

- 2.C.1.h) Comment s'appelle le point au sommet de la courbe ? Quelle est sa propriété ?
- 2.C.1.i) Qu'appelle-t-on chaleur latente de vaporisation ? La calculer à $t=35^{\circ}$ C puis à $t=264^{\circ}$ C.
- 2.C.2- On souhaite qu'à l'entrée de la chaudière, l'eau soit un liquide saturant, et qu'à la sortie de la chaudière l'eau soit de la vapeur saturante à 264° C. On a toujours $t_f = 35^{\circ}$ C.
- 2.C.2.a) Tracer le cycle décrit par le fluide dans le diagramme entropique fourni, à rendre avec votre copie. Placer les points 1 à 4.
 - 2.C.2.b) Que représente Q₂₃ ?
- 2.C.2.c) Expliquer comment on peut avoir accès au titre massique x en vapeur en un point du milieu hétérogène. Donner les titres massiques x en vapeur pour chacun des quatre points.
- 2.C.2.d) Définir la variance. Rappeler la règle des phases. Comment se traduit-elle dans le cas d'un système monophasé ? diphasé ? triphasé ?
 - 2.C.2.e) Que dire de la pression P pour les transformations 23 et 41 ?
 - 2.C.2.f) Calculer les volumes massiques aux points 1 et 4.
 - 2.C.2.g) Placer ces points sur le diagramme de Clapeyron.
 - 2.C.3- Calculer q_fet q_c. Vérifier la valeur du rendement R₀.

3- Etude qualitative du rendement du cycle de la partie I lorsque ce cycle n'est pas réversible

- 3.1- Les transformations ne sont plus nécessairement réversibles. Montrer que le rendement R est alors toujours inférieur ou égal à une valeur maximale correspondante à la valeur du rendement R₀ calculé pour le moteur de Carnot précédent.
 - 3.2- Placer qualitativement les points 1' et 4' sur le diagramme Ts de façon à avoir :
- 2 et 3 sur les courbes de rosée et d'ébullition comme en II-C.
- l'2 et 34' adiabatiques irréversibles
- 23 et 4'1' isothermes

Vous prendrez un exemple de votre choix.

3.3- Calculer le rendement R₀ dans le cas de votre exemple. Conclusion ?

