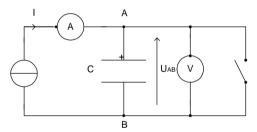
LES CONDENSATEURS.


1. OBJECTIFS DU TP.

- Etudier la charge d'un condensateur à courant constant et en déduire graphiquement la valeur de sa capacité C.
- Vérifier les lois vues en cours dans le cas d'une association de deux condensateurs en série et en parallèle.
- Etudier la charge et la décharge d'un condensateur à tension constante et en déduire graphiquement la valeur de la constante de temps τ du circuit.

2. ETUDE DE LA CHARGE D'UN CONDENSATEUR A COURANT CONSTANT : DETERMINATION DE SA CAPACITE C.

2.1. Schéma du montage.

Soit le schéma du montage suivant :

2.2. Matériel.

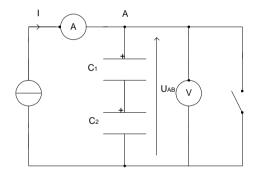
- Un ampèremètre à aiguille. (Calibre 1mA).
- Un voltmètre numérique.
- Un condensateur de capacité C=4700μF.
- Un interrupteur.
- Une alimentation continue dont on peut faire varier la tension de 0 à 20V.

2.3. Manipulation.

- Dans un premier temps, on relie l'ampèremètre directement à la sortie du générateur de courant.
- A l'aide de l'alimentation continue (**Ne pas dépasser 12V**) et du potentiomètre du circuit imprimé, on règle l'intensité du courant à I=0.4mA.(On pourra prendre une valeur de I inférieure (0.2 ou 0.1mA) si on constate que la charge du condensateur dure moins d'une minute).
- On réalise le montage ci dessus.

Toutes les 10 secondes (voire toutes les 5 secondes) et pendant une minute, relever la valeur de la tension U_{AB} ainsi que la valeur de l'intensité du courant I.

Regrouper les résultats dans un tableau de mesures dans lequel on pensera également à faire figurer la charge Q du condensateur.


- Tracer le graphe Q=f(U_{AB}). Que peut on dire de l'allure de la courbe obtenue ?
- Calculer le coefficient directeur de la droite obtenue et préciser son unité. En déduire la valeur de la capacité C du condensateur.
- Donner l'équation de la courbe obtenue.

3. ASSOCIATION DE CONDENSATEURS.

3.1. Association en série.

3.1.1 Schéma du montage.

Soit le schéma du montage suivant :

3.1.2. Matériel.

- Un ampèremètre à aiguille. (Calibre 1mA).
- Un voltmètre numérique.
- Un condensateur de capacité C_1 =4700 μF et un condensateur de capacité C_2 =2200 μF .
- Un interrupteur.
- Une alimentation continue dont on peut faire varier la tension de 0 à 20V.

BERTHON Laurent Physique Appliquée 1^{ère} Ad GE

3.1.3. Manipulation.

- Dans un premier temps, on relie l'ampèremètre directement à la sortie du générateur de courant.

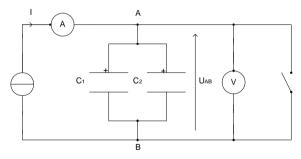
A l'aide de l'alimentation continue (**Ne pas dépasser 12V**) et du potentiomètre du circuit imprimé, on règle l'intensité du courant à I=0.4mA.(On pourra prendre une valeur de I inférieure (0.2 ou 0.1mA) si on constate que la charge des condensateurs dure moins d'une minute).

- On réalise le montage ci dessus.

Toutes les 10 secondes (voire toutes les 5 secondes) et pendant une minute, relever la valeur de la tension U_{AB} ainsi que la valeur de l'intensité du courant I.

Regrouper les résultats dans un tableau de mesures dans lequel on pensera également à faire figurer la charge totale Q des condensateurs.

- Tracer le graphe Q=f(U_{AB}). Que peut on dire de l'allure de la courbe obtenue ?
- Calculer le coefficient directeur de la droite obtenue et préciser son unité. En déduire la valeur de la capacité $C_{\rm eq}$ du condensateur.
- Donner l'équation de la courbe obtenue.


3.1.4. Conclusions.

- A partir des résultats obtenus dans le paragraphe 3.1.3., en déduire la loi d'association en série de deux condensateurs de capacités respectives C₁ et C₂.
- En utilisant des lois simples (loi des nœuds, loi des mailles...), redémontrer cette loi comme vous l'avez vue en cours.

3.2. Association en parallèle.

3.2.1 Schéma du montage.

Soit le schéma du montage suivant :

3.2.2. Matériel.

- Un ampèremètre à aiguille. (Calibre 1mA).
- Un voltmètre numérique.
- Un condensateur de capacité C₁=4700μF et un condensateur de capacité C₂=2200μF.
- Un interrupteur.
- Une alimentation continue dont on peut faire varier la tension de 0 à 20V.

3.2.3. Manipulation.

 Dans un premier temps, on relie l'ampèremètre directement à la sortie du générateur de courant.

A l'aide de l'alimentation continue (**Ne pas dépasser 12V**) et du potentiomètre du circuit imprimé, on règle l'intensité du courant à I=0.4mA.(On pourra prendre une valeur de I inférieure (0.2 ou 0.1mA) si on constate que la charge des condensateurs dure moins d'une minute).

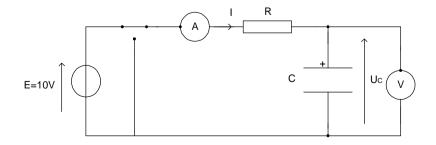
- On réalise le montage ci dessus.

Toutes les 10 secondes (voire toutes les 5 secondes) et pendant une minute, relever la valeur de la tension U_{AB} ainsi que la valeur de l'intensité du courant I.

Regrouper les résultats dans un tableau de mesures dans lequel on pensera également à faire figurer la charge totale Q des condensateurs.

- Tracer le graphe Q=f(U_{AB}). Que peut on dire de l'allure de la courbe obtenue ?
- Calculer le coefficient directeur de la droite obtenue et préciser son unité. En déduire la valeur de la capacité $C_{\rm eq}$ du condensateur.
- Donner l'équation de la courbe obtenue.

3.2.4. Conclusions.


- A partir des résultats obtenus dans le paragraphe 3.2.3., en déduire la loi d'associa tion en parallèle de deux condensateurs de capacités respectives C_1 et C_2 .
- En utilisant des lois simples (loi des nœuds, loi des mailles...), redémontrer cette loi comme vous l'avez vue en cours.

4. ETUDE DE LA CHARGE ET DE LA DECHARGE D'UN CONDENSATEUR SOUS TENSION CONSTANTE AU TRAVERS D'UNE RESISTANCE.

4.1. Etude de la charge d'un condensateur sous tension constante au travers d'une résistance.

4.1.1 Schéma du montage.

Soit le schéma du montage suivant :

4.1.2. Matériel.

- Un ampèremètre à aiguille. (Calibre 3mA).
- Un voltmètre numérique.
- Un condensateur de capacité C=4700μF.
- Un interrupteur à point milieu que l'on pourra remplacer par un fil.
- Une alimentation continue de 0 à 20V réglée à E=10V.
- Un conducteur ohmique de résistance $R=4.7k\Omega$.

4.1.3. Manipulation.

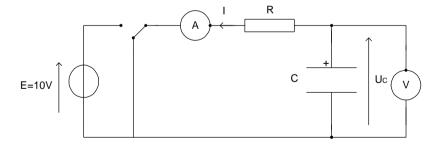
- On réalise le montage ci dessus.

Toutes les 10 secondes et pendant deux minutes, relever la valeur de la tension $U_{\rm C}$ ainsi que la valeur de l'intensité du courant I.

Regrouper les résultats dans un tableau de mesures.

- Tracer les graphes U_C=f(t) et I=f(t) sur deux feuilles différentes de papier millimétré.
- Pour chacune des deux courbes, déterminer graphiquement la valeur de la constante de temps $\tau_{\text{graphique}}$ du circuit.

Comparer cette valeur avec la constante de temps théorique τ théorique du circuit sachant que $\tau t_{h\acute{e}orique} = R * C$.


Conclure.

- A partir des deux graphes, déterminer les valeurs de I et de U_C pour $t=\tau$, $t=3*\tau$ et $t=5*\tau$.

4.2. Etude de la décharge d'un condensateur sous tension constante au travers d'une résistance.

4.2.1 Schéma du montage.

Soit le schéma du montage suivant :

4.2.2. Matériel.

- Un ampèremètre à aiguille. (Calibre 3mA).
- Un voltmètre numérique.
- Un condensateur de capacité C=4700μF.
- Un interrupteur à point milieu que l'on pourra remplacer par un fil.
- Une alimentation continue de 0 à 20V réglée à E=10V.
- Un conducteur ohmique de résistance $R=4.7k\Omega$.

4.2.3. Manipulation.

- On réalise le montage ci dessus.

Toutes les 10 secondes et pendant deux minutes, relever la valeur de la tension U_C ainsi que la valeur de l'intensité du courant I. (Attention, le sens de I a changé par rapport au montage précédent donc dans ce cas, on obtiendra des valeurs négatives).

Regrouper les résultats dans un tableau de mesures.

- Tracer les graphes U_C=f(t) et I=f(t) sur les feuilles de papier millimétré utilisées pour l'étude de la charge.
- Pour chacune des deux courbes, déterminer graphiquement la valeur de la constante de temps $\tau_{\text{graphique}}$ du circuit.
- Comparer cette valeur avec la constante de temps théorique $\tau_{théorique}=R^*C$. Conclure.
- A partir des deux graphes, déterminer les valeurs de I et de U_C pour $t=\tau$, $t=3*\tau$ et $t=5*\tau$.